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Abstract
In the model suggested by Smilansky (2004 Waves Random Media 14 143–53)
one studies an operator describing the interaction between a quantum graph and
a system of K one-dimensional oscillators attached at several different points
in the graph. The present paper is the first one in which the case K > 1 is
investigated. For the sake of simplicity, we consider K = 2, but our argument is
of a general character. In this first of two papers on the problem, we describe the
absolutely continuous spectrum. Our approach is based upon scattering theory.

PACS numbers: 02.30.Sa, 02.30.Tb, 05.45.Mt
Mathematics Subject Classification: 81Q10, 81Q15, 35P25

1. Introduction

In the paper [7] U Smilansky suggested a mathematical model to which he gave the name
‘irreversible quantum graph’. In this model, one studies the interaction between a quantum
graph and a finite system of one-dimensional oscillators attached at several different points
in the graph. Recall that the term ‘quantum graph’ usually stands for a metric graph �

equipped with a self-adjoint differential operator acting on L2(�); see the review paper [4]
and references therein. In our case, this operator will be the Laplacian −�.

In Smilansky’s model, one initially deals with two independent dynamical systems. One
of the systems acts in L2(�) and its Hamiltonian is the Laplacian. Another system acts in the
space L2(RK),K � 1 and is generated by the Hamiltonian Hosc = ∑K

k=1hk where

hk = ν2
k

2

(
− ∂2

∂qk
2 + q2

k

)
, k = 1, . . . , K;

in [7] the oscillators are written in a slightly different form; one form reduces to another
by scaling. In what follows the points in � are denoted by x and the points in R

K by
q = (q1, . . . , qK).
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Consider now the operator

A0 = −� ⊗ I + I ⊗ Hosc (1.1)

in the space L2(� × R
K). It is defined by the differential expression

AU = −�xU +
1

2

K∑
k=1

ν2
k

(
− ∂2U

∂qk
2 + q2

k U

)
(1.2)

and is self-adjoint on the natural domain. The terms in (1.1) do not interact with each other.
Interaction is introduced with the help of a system of ‘matching conditions’ on the

derivative U ′
x at some points o1, . . . , oK ∈ �. One says that the kth oscillator is attached to

the graph at the point ok . The condition at the point ok is

[U ′
x](ok, q) = αkqkU(ok, q), k = 1, . . . , K, (1.3)

where [f ′
x](·) stands for the expression appearing in the Kirchhoff condition, well known in

the theory of electric networks. When � = R (which is the only case we deal with in the main
body of the paper), [f ′

x](·) is the jump of the derivative,

[f ′
x](o) = f ′

x(o+) − f ′
x(o−). (1.4)

The real parameter αk in (1.3) expresses the strength of interaction between the quantum graph
and the oscillator hk . The case α1 = · · · = αK = 0 corresponds to the operator A0 as in (1.1).

Sometimes we shall denote by α, ν the multi-dimensional parameters α =
{α1, . . . , αK}, ν = {ν1, . . . , νK}. Let Aα;ν = Aα1,...,αK ;ν1,...,νK

stand for the operator defined by
the differential expression (1.2) and conditions (1.3). Usually, the values of νk are fixed and
we exclude them from the notation. On the other hand, we use the notation A�;α;ν for this
operator when it is necessary to reflect its dependence on the graph.

The problem to be considered is the description of the spectrum of the dynamical system
generated by the Hamiltonian Aα;ν . More specifically, it is to construct the self-adjoint
realization of Aα;ν as an operator in the Hilbert space L2(�×R

K) and to describe its spectrum.
Up until now, the problem has only been investigated for the simplest case K = 1. The

first results were obtained in the paper [7] by Smilansky. Then a detailed study of the problem
was carried out in the papers [5, 8, 9]. In [10], along with some new results, a detailed survey
of the current state of the problem is given.

At first sight, the problem might seem amenable to the perturbation theory of quadratic
forms. Indeed, the spectrum σ(A0) can be easily described by separation of variables and the
perturbation in the quadratic form, which appears when passing from A0 to Aα with α �= 0,
seems not to be too strong. However, this is not so: this perturbation turns out to be only form-
bounded but not form-compact, which makes it impossible to apply the standard techniques.
So, the problem requires certain specific tools which were developed in [5, 8–10]. The most
important of these tools is the systematic use of Jacobi matrices.

It was found in the above-mentioned papers on the one-oscillator problem that the
character of the spectrum strongly depends on the size of α: there exists some α∗ > 0
such that the absolutely continuous spectrum σa.c.(Aα) coincides with σa.c.(A0) if |α| < α∗

(in particular, it is absent if the graph is compact) and fills the whole of R if |α| > α∗. The
dependence of the structure of the point spectrum σp(Aα) on α is also well understood.

This is the first of two papers on the problem for K > 1 and in it we study the absolutely
continuous spectrum; in our other paper [1] the point spectrum is investigated. This division
is natural, since the technical tools used in each part are different. We address the simplest
situation, when � = R and K = 2, but our argument is of a rather general character and we
firmly believe that it applies to a wide class of graphs and to any K. However, in the general
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case, the calculations become more complicated and this obscures the main features of the
argument.

We first describe informally the main ideas lying behind our approach.
The effect of adding one more oscillator to a system with K oscillators is twofold. Firstly,

the total dimension of the set � × R
K increases by 1 which certainly affects the spectrum.

Secondly, there is some effect coming from the additional matching condition (1.3) at the point
oK+1. This second effect disappears if we take αK+1 = 0. Indeed, then the variable qK+1 can
be separated and the operator decomposes into the orthogonal sum of simpler operators. More
exactly, denote by Ã the operator which corresponds to the configuration with the (K + 1)th
oscillator removed,

Ã = Aα1,...,αK ;ν1,...,νK
.

Then it is easy to see that

Aα1,...,αK ,0;ν1,...,νK ,νK+1 =
∑
n∈N0

⊕(
Ã + ν2

K+1(n + 1/2)
)
. (1.5)

This orthogonal decomposition yields the complete description of the spectrum of the operator
on the left-hand side, provided that the spectrum of Ã is known.

The key observation which allows one to solve the general problem is that the interaction
between the oscillators attached at different points is weak. For K = 2, this observation leads
to the conclusion that the study of σ

(
Aα1,α2;ν1,ν2

)
can be reduced to the same problem for the

operators Aα1,0;ν1,ν2 and A0,α2;ν1,ν2 . Due to the equality (1.5) this reduces the problem to the
study of the spectra of two operators, Aα1;ν1 and Aα2;ν2 , each corresponding to the case of only
one oscillator. Since the latter case is already well understood, we obtain the desired results
for our more complicated case.

An accurate realization of this idea is different for the point spectrum and for the absolutely
continuous spectrum. In the present paper, we concentrate on the absolutely continuous
spectrum. Here, an important correction to the above scheme is necessary: the study of
σa.c.

(
Aα1,α2;ν1,ν2

)
does not reduce to the study of σa.c.

(
Aα1;ν1

)
and σa.c.

(
Aα1;ν1

)
for the same

graph �. Rather, we have to divide � into two parts, � = �1 ∪ �2 in such a way that oj ∈ �j

and oj /∈ �3−j . Then σa.c.
(
A�;α1,α2;ν1,ν2

)
can be expressed in terms of σa.c.

(
A�j ;αj ;νj

)
, j = 1, 2.

The paper [1] is devoted to the study of the point spectrum. There such a partition of � is
unnecessary.

We use the following notation. We write N0 for the set {0, 1, . . .}. The diagonal operator
in an appropriate �2-space, with the diagonal elements a0, a1, . . . , is denoted by diag{an}. We
apply similar notation for the block-diagonal operators. The notation J ({an}, {bn}) stands for
the Jacobi matrix whose non-zero entries are jn,n = an and jn,n+1 = jn+1,n = bn. If A is
a self-adjoint operator in a Hilbert space, then σ(A), σa.c.(A), σp(A) stand for its spectrum,
absolutely continuous (a.c.) spectrum and point spectrum, respectively. We use the symbol
ma.c.(λ; A) for the multiplicity function of the a.c. spectrum. The symbol S1 stands for the
trace class of compact operators.

Other necessary notations are introduced in the course of the presentation.

2. Statement of the problem: results

2.1. The operator Aα

As was mentioned in the introduction, we present our argument for the graph � = R and
K = 2. We choose the points o1 = 1, o2 = −1 and denote the coordinates in R

2 by q+, q−
and the parameters by α = {α+, α−}, ν = {ν+, ν−}. The Laplacian on � is just the operator
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−d2/dx2 with the Sobolev space H 2(R) as the operator domain. The operator Aα,ν acts in the
Hilbert space H = L2(R3) and is defined by the differential expression

AU = AνU = −U ′′
x2 +

ν2
+

2

(−U ′′
q2

+
+ q2

+U
)

+
ν2

−
2

(−U ′′
q2−

+ q2
−U

)
(2.1)

and the matching conditions (cf (1.4))

[U ′
x](±1, q+, q−) = α±q±U(±1, q+, q−). (2.2)

So, in the notation of the introduction, we are dealing with the operator

AR;α+,α−;ν+,ν− .

However, as a rule we use the shortened notation Aα . Note that the replacement α± �→ −α±
corresponds to the change of variables q± �→ −q± which does not affect the spectrum. For
this reason, we discuss only α± � 0.

The structure of the differential expression A makes it natural to decompose the function
U in a double series in terms of the normalized Hermite functions χn, namely

U(x, q+, q−) =
∑

m,n∈N0

um,n(x)χm(q+)χn(q−), (2.3)

which is hereafter represented by U ∼ {um,n}. The mapping U �→ {um,n} is an isometry of
the space L2(R3) onto the Hilbert space �2

(
N

2
0;L2(R)

)
. We evidently have AU ∼ {Lm,num,n}

where

(Lm,nu)(x) = −u′′(x) + rm,nu(x), x �= ±1; (2.4)

rm,n = ν2
+(m + 1/2) + ν2

−(n + 1/2), m, n ∈ N0. (2.5)

The conditions at x = ±1 reduce to

[u′
m,n](1) = α+√

2
(
√

m + 1um+1,n(1) +
√

mum−1,n(1));

[u′
m,n](−1) = α−√

2
(
√

n + 1um,n+1(−1) +
√

num,n−1(−1)).
(2.6)

To derive conditions (2.6) from (2.2), one uses the recurrency equation for the functions χn,
√

n + 1χn+1(q) −
√

2qχn(q) +
√

nχn−1(q) = 0.

2.2. Operator A0

The operator A0 := A0,0;ν+,ν− admits separation of variables and we get

A0 =
∑
m,n

⊕
(H0 + rm,n), (2.7)

where H0 is the self-adjoint operator −d2/dx2 in L2(R). This leads to the complete
description of the spectrum σ(A0), namely, that it is purely a.c. and fills the half-line
[r0,0,∞) = [(

ν2
+ + ν2

−
)/

2,∞)
. The expression for the multiplicity function ma.c.(λ; A0)

immediately follows from (2.7), but is omitted.
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2.3. Domain of Aα

It is convenient to describe the domain of the self-adjoint realization of the operator Aα in
terms of the decomposition (2.3). Define the set Dα as follows.

Definition 2.1. An element U ∼ {um,n} lies in Dα if and only if

(1) um,n ∈ H 1(R) for all m, n.
(2) For all m, n, the restriction of um,n to each interval (−∞,−1), (−1, 1), (1,∞) lies in

H 2 and moreover,∑
m,n

∫
R

|Lm,num,n|2 dx < ∞.

(3) Conditions (2.6) are satisfied.

Along with the set Dα , define its subset

D•
α = {U ∈ Dα : U ∼ {um,n} finite}

where by finite we mean that the sequence has only a finite number of non-zero components.
Denote by A•

α the operator in H = L2(R3), defined by the system (2.4) on the domain D•
α .

Lemma 2.2. The operator A•
α is symmetric in H. Its adjoint coincides with the operator Aα

considered on the domain Dα:

(A•
α)∗ = Aα.

The proof is a straightforward modification of that for (5.2) in [5].

Theorem 2.3. For any α+, α− � 0 the operator Aα is self-adjoint.

The proof is given in section 4. Theorem 2.3 and lemma 2.2 show that Aα is the unique
natural self-adjoint realization of the operator, defined by the differential expression (2.1) and
the matching conditions (2.2).

2.4. Absolutely continuous spectrum of the operator Aα

Below we construct an operator A◦
α whose a.c. spectrum admits a complete description. Then

we show that the a.c. spectra of both operators Aα and A◦
α coincide, including the multiplicities.

As a first step, let us consider two operators, A+
α+

and A−
α− . The operator A+

α+
, say, acts

in the space L2(R+ × R
2) and is defined by the differential expression (2.1), the matching

condition (2.2) at the point o1 = 1 and the Dirichlet condition U(0, q+, q−) = 0. The definition
of A−

α− is similar, with R+ replaced by R− and the point o1 = 1 by o2 = −1. By separation of
variables, the operators A±

α± can be identified with the orthogonal sum of simpler operators:

A+
α+

=
∑
n∈N0

⊕(
AR+;α+;ν+ + ν2

−(n + 1/2)
)
,

A−
α− =

∑
m∈N0

⊕(
AR−;α−;ν− + ν2

+(m + 1/2)
)
.

(2.8)

Hence, both operators are self-adjoint. The direct sum

A◦
α = A◦

α+,α−;ν+,ν− := A+
α+

⊕ A−
α− (2.9)

is a self-adjoint operator in the original Hilbert space H.
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The following theorem is the main result of the paper. Its formulation involves the notion
of wave operator, which is one of the basic notions in mathematical scattering theory; see e.g.
[3, 6] or [11].

Theorem 2.4. For each of the pairs (Aα, A◦
α), (A◦

α, Aα), there exist complete isometric wave
operators. In particular, the absolutely continuous parts of Aα and A◦

α are unitarily equivalent.

Theorem 2.4 and formulae (2.8), (2.9) reduce the study of σa.c.(Aα) to the similar problem
for the case of only one oscillator. The latter problem was solved in [5, 10]. The next statement
collects, for the particular case we need, the results of section 3 in [10]; see also theorem 5.1
and remarks in section 9 of [5]. In both papers it was assumed that ν = 1, and we arrive at the
formulation below via scaling. By default, we take ma.c.(λ; A) = 0 if λ /∈ σa.c.(A).

Proposition 2.5 (the case of one oscillator). Let � = R+ and o = 1 or � = R− and o = −1.
Then,

(1) σa.c.(A0;ν) = [ν2/2,∞);
ma.c.(λ; A0;ν) = n for −ν2/2 � λ − ν2n < ν2/2, n ∈ N;

(2) if 0 < α < ν
√

2, then

σa.c.(Aα;ν) = σa.c.(A0;ν) = [ν2/2,∞); ma.c.(λ; Aα;ν) = ma.c.(λ; A0;ν);
(3) if α = ν

√
2, then

σa.c.(Aα;ν) = [0,∞); ma.c.(λ; Aα;ν) = ma.c.(λ; A0;ν) + 1, ∀λ � 0;
(4) if ν

√
2 < α < ∞, then

σa.c.(Aα;ν) = R; ma.c.(λ; Aα;ν) = ma.c.(λ; A0;ν) + 1, ∀λ ∈ R.

Now we are in a position to present the final formula for the function ma.c.(λ; A◦
α), and

thus for our original operator Aα .

ma.c.(λ; Aα) =
∑
n∈N0

ma.c.
(
λ − ν2

−(n + 1/2); AR+;α+;ν+

)
+

∑
m∈N0

ma.c.
(
λ − ν2

+(m + 1/2); AR−;α−;ν−
)
. (2.10)

Combining the equality (2.10) with proposition 2.5, we obtain the following description
of the a.c. spectrum of the operator Aα for any α+, α− � 0.

Theorem 2.6. Let Aα = Aα;ν be the self-adjoint operator defined by the differential expression
(2.1) on the operator domain Dα .

(1) If α±/ν± <
√

2, then

σa.c.(Aα) = [r0,0,∞) = [(
ν2

+ + ν2
−
)/

2,∞)
.

(2) Let α+/ν+ = √
2 and α−/ν− <

√
2 or α−/ν− = √

2 and α+/ν+ <
√

2. Then,

σa.c.(Aα) = [
ν2

−
/

2,∞)
or σa.c.(Aα) = [

ν2
+

/
2,∞)

,

respectively.
(3) Let α+/ν+ = α−/ν− = √

2. Then

σa.c.(Aα) = [0,∞).

In all cases 1–3 the multiplicity function ma.c.(λ; Aα), given by the equality (2.10), is finite
for all λ ∈ σa.c.(Aα).
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(4) Let max(α+/ν+, α−/ν−) >
√

2. Then,

σa.c.(Aα) = R, ma.c.(λ; Aα) ≡ ∞.

In connection with this theorem, we would like to emphasize that the existence of the
wave operators established in theorem 2.4 gives much more information about the operator
Aα than just the description of its a.c. spectrum.

For the proof of theorem 2.4 we use the following classical result due to Kato, see
theorem 6.5.1 and remark 6.5.2 in [11].

Proposition 2.7. Let A, A◦ be self-adjoint operators in a Hilbert space. Suppose that for
some natural number p the inclusion

(A◦ − 
)−p − (A − 
)−p ∈ S1

is satisfied for all non-real 
 ∈ C. Then complete isometric wave operators exist for both
pairs A, A◦ and A◦, A.

In our case, the conditions of proposition 2.7 turn out to be fulfilled with p = 3. This is
the result of the following statement whose proof is our main technical goal in this paper.

Theorem 2.8. For any non-real 
 ∈ C one has

(A◦
α − 
)−3 − (Aα − 
)−3 ∈ S1. (2.11)

Theorem 2.4 is a direct consequence of theorem 2.8.
The proof of theorem 2.8 is rather long and requires some preparatory work.

3. Auxiliary material

In this section, we present some elementary technical material concerning the equations

−u′′ + ζ 2u = f, (3.1)

−v′′ + ζ 2v = 0, (3.2)

where ζ = γ + iδ is a complex parameter. We need this material for the proofs of both our
main technical results, theorems 2.3 and 2.8.

We assume that γ > 0, and are mainly interested in estimates which are uniform with
respect to ζ .

3.1. Homogeneous equation

Let Fζ be the two-dimensional space of functions on R which are continuous, vanish as
|x| → ∞, and for x �= ±1 satisfy equation (3.2). We choose the following basis ϕ+

ζ , ϕ−
ζ

in Fζ :

ϕ+
ζ (x) =


0, x < −1,

sinh ζ(x + 1)

sinh 2ζ
, −1 � x � 1,

e−ζ(x−1), x > 1.

ϕ−
ζ (x) = ϕ+

ζ (−x)

Then,

ϕ+
ζ (1) = ϕ−

ζ (−1) = 1, ϕ+
ζ (−1) = ϕ−

ζ (1) = 0. (3.3)



4618 W D Evans and M Solomyak

Just for this reason this basis is more convenient than the ‘natural’ basis consisting of the
functions e−ζ |x±1|. Note also that[(

ϕ±
ζ

)′]
(±1) = − 2ζ

1 − e−4ζ
,

[(
ϕ±

ζ

)′]
(∓1) = 2ζ e−2ζ

1 − e−4ζ

and hence, for all v ∈ Fζ ,

[v′](1) = − 2ζ

1 − e−4ζ
(v(1) − e−2ζ v(−1)),

[v′](−1) = − 2ζ

1 − e−4ζ
(v(−1) − e−2ζ v(1)).

(3.4)

A standard calculation shows that for the norm and scalar product in L2(R),∥∥ϕ+
ζ

∥∥2 = ∥∥ϕ−
ζ

∥∥2 = 1

2γ
+

γ −1 sinh 4γ − δ−1 sin 4δ

4(sinh2 2γ + sin2 2δ)
= γ −1 + o(e−4γ ),(

ϕ+
ζ , ϕ−

ζ

) = O(e−2γ ), γ → ∞.

(3.5)

This shows that for γ large the chosen basis is ‘almost orthogonal’. It follows that the two-sided
estimate

c−1
0 γ ‖v‖2 � |C+|2 + |C−|2 � c0γ ‖v‖2, v = C+ϕ

+
ζ + C−ϕ−

ζ ∈ Fζ , (3.6)

with some c0 > 1, is satisfied uniformly in any half-plane γ = Re ζ � γ0 > 0.
Now we turn to the subspace F◦

ζ formed by the functions v ∈ Fζ , satisfying an additional
condition v(0) = 0. The functions

ϕ
◦,+
ζ (x) =


0, x < 0,

sinh ζx

sinh ζ
, 0 � x � 1,

e−ζ(x−1), x > 1;
ϕ

◦,−
ζ (x) = ϕ

◦,+
ζ (−x)

form a natural basis in F◦
ζ . For the functions ϕ

◦,±
ζ the equalities (3.3) are satisfied, and instead

of (3.4) we have

[v′](±1) = − 2ζ

1 − e−2ζ
v(±1), ∀v ∈ F◦

ζ . (3.7)

Similarly to (3.5), we find that∥∥ϕ
◦,±
ζ

∥∥2 = γ −1 + O(e−2γ ),
(
ϕ

◦,+
ζ , ϕ

◦,−
ζ

) = O(e−γ ), γ → ∞.

As a consequence, we conclude that an analogue of (3.6), with the functions ϕ±
ζ replaced by

ϕ
◦,±
ζ , is valid for v ∈ F◦

ζ .
A straightforward calculation also shows that∥∥ϕ

◦,±
ζ − ϕ±

ζ

∥∥ = O(e−γ ), γ → ∞. (3.8)

3.2. Non-homogeneous equation

Here, we discuss equation (3.1) without the matching conditions at x = ±1 or, equivalently,
under the conditions of the type (2.6) with α = 0. Then the solution is given by

uζ (x) = (2ζ )−1
∫

R

e−ζ |x−t |f (t) dt. (3.9)
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The solution of the same equation (3.1) subject to the condition u(0) = 0 is

u◦
ζ (x) =

{
(2ζ )−1

∫
R+

(e−ζ |x−t | − e−ζ(x+t))f (t) dt, x > 0;
(2ζ )−1

∫
R−

(e−ζ |x−t | − eζ(x+t))f (t) dt, x < 0.
(3.10)

The difference u◦
ζ − uζ is given by a rank 1 operator,

u◦
ζ (x) − uζ (x) = −(2ζ )−1gζ (x)

∫
R

f (t)gζ (t) dt, gζ (x) = e−ζ |x|. (3.11)

Note that ‖gζ‖2 = γ −1.

3.3. Dependence on the additional parameters

We are particularly interested in the case when ζ depends on two parameters r ∈ R and 
 ∈ C,
where r � r0 > 0,
 /∈ R+:

ζ = ζr(
) := γr(
) + iδr(
) = √
r − 
. (3.12)

We select the branch of the square root in (3.12) to have

Re ζr(
) > 0, Im 
 · Im ζr(
) � 0.

For 
 fixed all the points ζr(
) lie in some half-plane Re ζr(
) � γ0(
) > 0, hence
(3.6) is satisfied. It is clear that γr(
) ∼ r1/2 as r → ∞. Therefore, for any 
 /∈ R there
exists a constant c1 = c1(
) > 1 such that

c−1
1 r1/2‖v‖2 � |C+|2 + |C−|2 � c1r

1/2‖v‖2,

∀v = C+ϕ
+
ζ + C−ϕ−

ζ ∈ Fζ , ζ = ζr(
).
(3.13)

4. Self-adjointness: proof of theorem 2.3

According to the general theory of self-adjoint operators, we must show that the equation
AαV = 
V has only the trivial solution for some (and then all) 
 ∈ C±. To simplify our
notation, we shall denote

ζm,n(
) = ζrm,n
(
) = (rm,n − 
)1/2, ϕ±

m,n(x;
) = ϕ±
ζm,n(
)(x). (4.1)

If V ∼ {vm,n}, then each function vm,n can be written as

vm,n(x) = r1/4
m,n

(
C+

m,nϕ
+
m,n(x;
) + C−

m,nϕ
−
m,n(x;
)

)
, (4.2)

with some coefficients C±
m,n. We have inserted the factor r

1/4
m,n in order that (cf (3.13)){

C+
m,n, C

−
m,n

} ∈ �2 ⇐⇒ {V ∈ H}. (4.3)

The matching conditions (2.6) at x = ±1 yield an infinite system of homogeneous linear
equations for the unknown coefficients C±

m,n. Below we set µ± = √
2/α±. Taking (3.4) into

account, we get from the condition at x = 1:

r
1/4
m+1,n(m + 1)1/2C+

m+1,n +
2µ+ζm,n(
)r

1/4
m,n

1 − e−4ζm,n(
)

(
C+

m,n − C−
m,n e−2ζm,n(
)

)
+ r

1/4
m−1,nm

1/2C+
m−1,n = 0.

(4.4)

It is convenient to multiply each equation by the factor r
1/4
m,n. Let us also denote

q+
m,n = m1/2r1/4

m,nr
1/4
m−1,n, q−

m,n = n1/2r1/4
m,nr

1/4
m,n−1; pm,n(
) = ζm,n(
)r1/2

m,n. (4.5)
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Equation (4.4) and the similar equation coming from condition (2.6) at x = −1 yield

q+
m+1,nC

+
m+1,n +

2µ+pm,n(
)

1 − e−4ζm,n(
)

(
C+

m,n − C−
m,n e−2ζm,n(
)

)
+ q+

m,nC
+
m−1,n = 0,

q−
m,n+1C

−
m,n+1 +

2µ−pm,n(
)

1 − e−4ζm,n(
)

(
C−

m,n − C+
m,n e−2ζm,n(
)

)
+ q−

m,nC
−
m,n−1 = 0.

(4.6)

Denote by R = R(
) the infinite matrix which corresponds to this system. In view of (4.3),
we consider R as an operator in the space

G = �2
(
N

2
0; C

2
)
.

Removing in (4.6) the exponentially small terms, we come to a simpler system

q+
m+1,nC

+
m+1,n + 2µ+pm,n(
)C+

m,n + q+
m,nC

+
m−1,n = 0; (4.7)

q−
m,n+1C

−
m+1,n + 2µ−pm,n(
)C−

m,n + q−
m,nC

−
m,n−1 = 0. (4.8)

Let R′ = R′(
) stand for the matrix which corresponds to the system (4.7)–(4.8), and also
for the operator in G generated by this matrix. The operator R′ decomposes into an infinite
family of simpler operators. First of all, equations (4.7) (for C+

m,n) and (4.8) (for C−
m,n) are

mutually independent. Further, fix any n ∈ N0. The equations in (4.7) which correspond to
the chosen value of n form a linear system in �2(N0) with the Jacobi matrix

J +
n (
) = J

({2µ+pm,n(
)}, {q+
m,n

})
.

In the same way, the equations in (4.8), which correspond to the chosen value of m, form
a linear system in �2(N0) with the Jacobi matrix

J −
m (
) = J

({2µ−pm,n(
)}, {q−
m,n

})
.

The above reasoning shows that

R′(
) =
∑

n

⊕
J +

n (
) ⊕
∑
m

⊕
J −

m (
). (4.9)

The original operator R can be written as

R(
) = R′(
) + N (
) (4.10)

where N = N (
) is a block-diagonal matrix with 2 × 2-blocks:

Nm,n(
) = 2pm,n(
) e−2ζm,n(
)

1 − e−4ζm,n(
)

(
µ+ e−2ζm,n(
) −µ+

−µ− e−2ζm,n(
)

)
. (4.11)

The last two equations elucidate the structure of the matrix R(
).
In the rest of the section, we take 
 = iτ ∈ iR. We will show that each term on the

right-hand side of (4.9) is an invertible operator in �2 and that the norms of
∥∥J ±

k (iτ)−1
∥∥ are

uniformly bounded. For this purpose, we note that

(2µ+)
−1 ImJ +

n (iτ) = (2µ−)−1 ImJ −
m (iτ) = diag{pm,n(iτ)}.

We have pm,n(iτ) =
√

r2
m,n − irm,nτ = X + iY where

2Y 2 = (
r4
m,n + r2

m,nτ
2
)1/2 − r2

m,n = rm,nτ
2(

r2
m,n + τ 2

)1/2
+ rm,n

� 2c2|τ |.

The last inequality, with some constant c > 0, is valid for |τ | � τ0 and for any m, n � 0; we
have taken into account that rm,n � r0,0 = (

ν2
+ + ν2

−
)/

2.
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By the well-known estimate for the operators with sign-defined imaginary part, see e.g.
theorem IV.4.1 in [2], this implies that∥∥J ±

k (iτ)−1
∥∥ � (c

√
|τ |)−1, ∀k ∈ N0,

and therefore

‖R′(τ )−1‖ = sup
∥∥J ±

k (τ )−1
∥∥ � (c

√
|τ |)−1. (4.12)

The norms of the blocks Nm,n(iτ) in (4.11) are controlled by |pm,n(iτ)| e−2γm,n(iτ) and
hence are bounded uniformly in m, n ∈ N0. Therefore,

‖R(±iτ) − R′(±iτ)‖ � C = C(τ0).

Choosing |τ | large enough, we conclude from (4.12) that

‖R(±iτ) − R′(±iτ)‖ < ‖R′(±iτ)−1‖−1.

It follows that the operator R(±iτ) has bounded inverse, and, in particular, the system (4.6)
has only the trivial solution in G.

The proof of theorem 2.3 is complete.

5. Representation of the resolvent (Aα − Λ)−1

5.1. Resolvent

In order to prove theorem 2.8, we need a convenient representation for both resolvents involved
in (2.11). Here, we do this for the operator Aα . We derive an analogue of formula (6.6) (the
basic formula) in [5] or, equivalently, (6.4) in [10]. However, there is an important difference
between the techniques we employ here and those in [5, 10]. The main goal in both cited
papers was the direct study of the a.c. spectrum of the operator corresponding to the case of one
oscillator. To achieve this objective, the behaviour of the resolvent as the spectral parameter
approaches the real axis was carefully studied. What we do here is to apply scattering theory,
and use the already known results of [5, 10]. This makes our analysis much easier. We are
able to work with the resolvents for a fixed value of the parameter 
. We exclude 
 from the
notation, unless to do so would be confusing.

Let a function F ∈ H have the decomposition F ∼ {fm,n}. For any α � 0 let us denote

Uα = (Aα − 
)−1F ∼ {uα;m,n}, V ∼ {vm,n} = {uα;m,n − u0;m,n}. (5.1)

In the notation for v we do not reflect dependence on the parameter α.
The operator (A0 − 
)−1 can be written in an explicit form. The functions u0;m,n are

given by formula (3.9), with ζ = ζm,n(
), see (4.1). It follows that

u0;m,n(±1) = (2ζm,n)
−1

∫
R

e−ζm,n|t∓1|fm,n(t) dt; [u′
0;m,n](±1) = 0. (5.2)

Each function vm,n belongs to the space Fζm,n
. Hence, the equalities (3.4) are satisfied

for it, again with ζ = ζm,n(
). Using these equalities and taking into account that
[u′

α;m,n](±1) = [v′
m,n](±1), we find from the matching condition in (2.6) at the point x = 1

that

− 2ζm,n

1 − e−4ζm,n
(vm,n(1) − e−2ζm,nvm,n(−1)) = α+√

2
(
√

m + 1uα;m+1,n(1) +
√

muα;m−1,n(1)).

(5.3)
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As in section 4, we let µ± = √
2/α±. Since vm,n = uα;m,n − u0;m,n, equation (5.3) yields

√
m + 1uα;m+1,n(1) +

2µ+ζm,n

1 − e−4ζm,n
(uα;m,n(1) − e−2ζm,nuα;m,n(−1))

+
√

muα;m−1,n(1) = 2µ+ζm,n

1 − e−4ζm,n
(u0;m,n(1) − e−2ζm,nu0;m,n(−1)). (5.4)

The next step is the same normalization as in section 4. Denote

X±
m,n = r−1/4

m,n u0;m,n(±1), Z±
m,n = r−1/4

m,n uα;m,n(±1). (5.5)

Each function vm,n can be represented as in (4.2), with C±
m,n = Z±

m,n − X±
m,n. We use a

shortened notation for the corresponding elements in G:

X = {
X+

m,n,X
−
m,n

}
, Z = {

Z+
m,n, Z

−
m,n

}
, C = {

C+
m,n, C

−
m,n

}
, m, n ∈ N0.

Multiplying each equation in (5.4) by r
1/4
m,n and writing out the similar equations coming

from the matching conditions at x = −1, we reduce the system to the form

q+
m+1,nZ

+
m+1,n +

2µ+pm,n

1 − e−4ζm,n

(
Z+

m,n − e−2ζm,nZ−
m,n

)
+ q+

m,nZ
+
m−1,n

= 2µ+pm,n

1 − e−4ζm,n

(
X+

m,n − e−2ζm,nX−
m,n

);
q−

m,n+1Z
−
m,n+1 +

2µ−pm,n

1 − e−4ζm,n

(
Z−

m,n − e−2ζm,nZ+
m,n

)
+ q−

m,nZ
−
m,n−1

= 2µ−pm,n

1 − e−4ζm,n

(
X−

m,n − e−2ζm,nX+
m,n

)
.

(5.6)

This is the non-homogeneous counterpart of the system (4.6). In order to write it more
conveniently, we need more notation. All the operators introduced below depend on 
 and
we always assume that 
 /∈ R.

Define the operator S = S(
) : H → G by

S : F �→
{

r
1/4
m,n

2

∫
R

e−ζm,n|t−1|fm,n(t) dt,
r

1/4
m,n

2

∫
R

e−ζm,n|t+1|fm,n(t) dt

}
.

According to (5.2) and (5.5), this can be written as

S : F �→ {
pm,nX

+
m,n, pm,nX

−
m,n

}
. (5.7)

It follows from the Cauchy–Schwartz inequality and (3.13) that the operator S is bounded.
The diagonal operator

P = P(
) :
{
X+

m,n,X
−
m,n

} �→ {
pm,nX

+
m,n, pm,nX

−
m,n

}
acts in G and is unbounded. Its inverse P−1 is a bounded operator.

Further, let M = M(
) be the operator generated by the block-diagonal matrix,
M = diag{Mm,n}, where

Mm,n = (1 − e−4ζm,n )−1

(
µ+ −µ+ e−2ζm,n

−µ− e−2ζm,n µ−

)
. (5.8)

Evidently, M is bounded in G.
Finally, we let

T = T (
) :
{
C+

m,n, C
−
m,n

} �→ {
r1/4
m,n

(
C+

m,nϕ
+
m,n + C−

m,nϕ
−
m,n

)}
. (5.9)

This is a bounded operator acting from G into H.
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The system (5.6) can be written in the operator form

RZ = 2MSF,

whence Z = 2R−1MSF . Here, R = R(
) is the operator in G which corresponds to the
left-hand side of the system (5.6), or, equivalently, of the homogeneous system (4.6). We also
have X = P−1SF , so that

C = Z − X = (2R−1M − P−1)SF.

If C is found from this equation, then evidently Uα − U0 = T C.
Now it follows from the construction that

(Aα − 
)−1 − (A0 − 
)−1 = T (2R−1M − P−1)S. (5.10)

This is the desired representation of the resolvent of the operator Aα .

5.2. On the matrix R(
)

It was shown in section 4 that for τ large enough the matrix R(iτ) has a bounded inverse.
This allowed us to conclude that the operator Aα − 
 has a bounded inverse for all 
 /∈ R,
and hence kerR(
) = {0} for all such 
. So, the operator R(
)−1 is well defined. However,
this does not imply automatically that this operator is bounded in G. We now show that this
property is a direct consequence of the representation (5.10). Indeed, (5.10) implies that

2R−1M − P−1 = (T ∗T )−1T ∗((Aα − 
)−1 − (A0 − 
)−1)S∗(SS∗)−1.

It is easy to show that for 
 /∈ R+ the operators M and T ∗T and SS∗ (acting in G) have
bounded inverses. This yields the desired result.

6. Representation of the resolvent (A◦
α − Λ)−1

Our aim here is to derive an analogue of the representation (5.10) for the operator A◦
α . One

possible way to proceed is to use the decompositions (2.8), (2.9). However, we prefer another
way, one which parallels our argument in section 5. The calculations are easier for A◦

α than
for Aα .

For the objects related to the operator A◦
α we use the notation

U ◦
α = (A◦

α − 
)−1F ∼ {u◦
α;m,n}, V ◦ ∼ {v◦

m,n} = {u◦
α;m,n − u◦

0;m,n}. (6.1)

An analogue of (5.2) is given by

u◦
0;m,n(±1) = (2ζm,n)

−1
∫

R±
(e−ζm,n|t∓1| − e−ζm,n(1±t))fm,n(t) dt. (6.2)

Next, we derive an analogue of (5.3). Taking (3.7) and [u◦′
0;m,n](±1) = 0 into account,

we get from the matching condition at x = 1:

− 2ζm,n

1 − e−2ζm,n
v◦

m,n(1) = α+√
2

(√
m + 1u◦

α;m+1,n(1) +
√

mu◦
α;m−1,n(1)

)
.

Since v◦
m,n = u◦

α;m,n − u◦
0;m,n, we find, taking, as before, µ± = √

2/α±:

√
m + 1u◦

α;m+1,n(1) +
2µ+ζm,n

1 − e−2ζm,n
u◦

α;m,n(1) +
√

mu◦
α;m−1,n(1) = 2µ+ζm,n

1 − e−2ζm,n
u◦

0;m,n(1). (6.3)

This is much simpler than the system (5.4), which, of course, merely reflects the special
structure of the operator A◦

α as given by (2.9).
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The normalization, as in section 5, reduces (6.3) and the similar equations for x = −1 to
the form

q+
m+1,nZ

◦,+
m+1,n +

2µ+pm,n

1 − e−2ζm,n
Z◦,+

m,n + q+
m−1,nZ

◦,+
m−1,n = 2µ+pm,n

1 − e−2ζm,n
X◦,+

m,n,

q−
m,n+1Z

◦,−
m,n+1 +

2µ−pm,n

1 − e−2ζm,n
Z◦,−

m,n + q−
m,n+1Z

◦,−
m,n−1 = 2µ−pm,n

1 − e−2ζm,n
X◦,−

m,n.

(6.4)

Here,

X◦,±
m,n = r−1/4

m,n u◦
0;m,n(±1), Z◦,±

m,n = r−1/4
m,n u◦

α;m,n(±1).

The coefficients q±
m,n, pm,n are the same as in (5.6), being defined in (4.5). By (6.2), we have

2pm,nX
◦,+
m,n =

∫
R+

(e−ζm,n|t−1| − e−ζm,n(t+1))fm,n(t) dt,

2pm,nX
◦,−
m,n =

∫
R−

(e−ζm,n|t+1| − eζm,n(t−1))fm,n(t) dt.

Now we define analogues of the operators involved in the equality (5.6). First of all,
R◦ = R◦(
) is the operator in G, defined by the infinite matrix which corresponds to the
left-hand side of (6.4). The operator R◦ can be written in the form similar to (4.10):

R◦(
) = R′(
) + N ◦(
) (6.5)

where

N ◦(
) = diag{N◦
m,n}, N◦

m,n = 2
pm,n e−2ζm,n

1 − e−2ζm,n

(
µ+ 0
0 µ−

)
. (6.6)

The self-adjointness of the operator A◦
α in H implies that the operator R◦(
) is invertible for

any 
 /∈ R.
The operator S◦ = S◦(
) : H → G is a bounded operator defined by

S◦ : F ∼ {fm,n} �→ {
pm,nX

◦,+
m,n, pm,nX

◦,−
m,n

};
cf (5.7).

The operator M◦ = M◦(
) is the bounded operator on G of block-diagonal form

M◦ = diag{Mm,n}, Mm,n = (1 − e−2ζm,n )−1

(
µ+ 0
0 µ−

)
. (6.7)

Finally, let

T ◦ = T ◦(
) :
{
C+

m,n, C
−
m,n

} �→ {
r1/4
m,n

(
C+

m,nϕ
◦,+
m,n + C+

m,nϕ
◦,−
m,n

)}
.

This is a bounded operator acting from G into H.
As in section 5, we can re-write the system (6.4) as

(A◦
α − 
)−1 − (A◦

0 − 
)−1 = T ◦(2(R◦)−1M◦ − P−1)S◦. (6.8)

Note that for any 
 �= 
 the operator R◦(
)−1 is bounded. The proof is the same as for
the operator R−1(
), see section 5.2.

7. Proof of theorem 2.8

7.1. The case α = 0

Here, we show that

(A◦
0 − 
)−3 − (A0 − 
)−3 ∈ S1. (7.1)



Spectrum of irreversible quantum graphs 4625

Recall that in the notation of (5.1) and (6.1)

(A0 − 
)−1F = {u0,m,n}, (A◦
0 − 
)−1F = {u◦

0,m,n}
where the functions u0,m,n, u

◦
0,m,n are given by equations (3.9) and (3.10) respectively, with

ζ = ζm,n. So, both operators are diagonal. Denote by �m,n,�
◦
m,n their components, and let

Q = diag{Qm,n} = (A◦
0 − 
)−1 − (A0 − 
)−1,

Qm,n = �◦
m,n − �m,n.

(7.2)

According to (3.11), each Qm,n is a rank 1 operator:

Qm,n : fm,n(x) �→ −(2ζm,n)
−1gm,n(x)

∫
R

gm,n(t)fm,n(t) dt (7.3)

where gm,n(x) = e−ζm,n|x|. It follows from (7.3) that

‖Qm,n‖ = (2|ζm,n|Re ζm,n)
−1 � Cr−1

m,n, C = C(
).

The norms of �m,n and �◦
m,n can be easily estimated (actually, ‖�m,n‖ can be calculated

explicitly, since this is a convolution operator). By the ‘Schur test’, the norm ‖K‖ of an
integral operator in L2 with the kernel K(x, t) can be estimated as

‖K‖2 � sup
t

∫
|K(x, t)| dx sup

x

∫
|K(x, t)| dt.

Applying this to the operators (3.9) and (3.10), we find that

‖�m,n‖, ‖�◦
m,n‖ � Cr−1

m,n.

Furthermore, the components of the operator (A◦
0 − 
)−3 − (A0 − 
)−3 are

�2
m,nQm,n + �m,nQm,n�

◦
m,n + Qm,n(�

◦
m,n)

2.

The norm of this operator does not exceed 3C3r−3
m,n and, since its rank is not greater than 3, its

trace class norm does not exceed 9C3r−3
m,n. By (2.5), these numbers form a convergent double

series, and hence, (7.1) is established.
Note that the exponent 3 in (7.1) cannot be replaced by 2.

7.2. Difference between the right-hand sides in (5.10), (6.8)

To shorten our notation, let us denote

H = T (2R−1M − P−1)S, H◦ = T ◦((2R◦)−1M◦ − P−1)S◦. (7.4)

Here, we show that

� := H◦ − H ∈ S1. (7.5)

Since all the inverse operators appearing in (7.4) are bounded, we only need to check that

T ◦ − T , S◦ − S, M◦ − M, R◦ − R ∈ S1.

Here, each operator has a block-diagonal structure, with (2×2)-blocks, and it is sufficient to
estimate the operator norm of each block and to verify that the corresponding series converge.

For the operators T ◦−T and S◦−S the result immediately follows from the definitions of
the operators involved and the estimate (3.8). For the operator M◦ − M, the result is evident
from the comparison of (5.8) and (6.7). Finally, for R◦ − R the result is implied by (4.10)
and (6.5), if we take into account evident estimates of the norms of blocks Nm,n in (4.11) and
N◦

m,n in (6.6).
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7.3. End of the proof

Unfortunately, the desired inclusion (2.11) is not implied by (7.1) and (7.5) automatically and
we need an extra argument in order to finalize the proof.

Let us denote G = (A0 − 
)−1. Using also the notation Q, � as in (7.2), (7.5), we can
re-write the equalities (5.10) and (6.8) as

(Aα − 
)−1 = G + H, (A◦
α − 
)−1 = G + H + Q + �.

We already know that � ∈ S1 and (G + Q)3 − G3 ∈ S1. Therefore, the following equality is
satisfied modulo a trace class correction:

(A◦
α − 
)−3 − (Aα − 
)−3 = (G + Q + H + �)3 − (G + H)3

= (G + Q + H)3 − (G + H)3 (mod S1)

= ((G + Q)2 − G2)H + (G + Q)H(G + Q) − GHG

+ H((G + Q)2 − G2) + QH2 + HQH + H2Q (mod S1).

Removing the parentheses, we come to the sum where each term involves one of the
products QH, HQ, QGH, HGQ. Taking into account the structure of the operator H, we see
that it is sufficient for us to prove that the operators

QT , SQ, Q(A0 − 
)−1T , S(A0 − 
)−1Q (7.6)

are trace class. All these operators have block-diagonal form, with the blocks given by
explicit formulae implied by the corresponding definitions. For instance, according to (5.9)
the operator QT transforms the number sequence

{
C+

m,n, C
−
m,n

}
into the sequence of functions

{wm,n} where

wm,n(x) = − r
1/4
m,n

2ζm,n

gm,n(x)

∫
R

(
C+

m,nϕ
+
m,n(t) + C−

m,nϕ
−
m,n(t)

)
gm,n(t) dt.

An elementary calculation shows that the integral here is of order O(e−γm,n ). This happens
because gm,n(t), see (7.3), is concentrated around the point t = 0, while ϕ±

m,n(t) is concentrated
around t = ±1, and all the three functions decay exponentially when t moves away from the
corresponding centre. Clearly, this estimate implies that QT ∈ S1. The proofs for the other
operators in (7.6) are similar.

The proof is complete.
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